112 research outputs found

    Building logical qubits in a superconducting quantum computing system

    Full text link
    The technological world is in the midst of a quantum computing and quantum information revolution. Since Richard Feynman's famous "plenty of room at the bottom" lecture, hinting at the notion of novel devices employing quantum mechanics, the quantum information community has taken gigantic strides in understanding the potential applications of a quantum computer and laid the foundational requirements for building one. We believe that the next significant step will be to demonstrate a quantum memory, in which a system of interacting qubits stores an encoded logical qubit state longer than the incorporated parts. Here, we describe the important route towards a logical memory with superconducting qubits, employing a rotated version of the surface code. The current status of technology with regards to interconnected superconducting-qubit networks will be described and near-term areas of focus to improve devices will be identified. Overall, the progress in this exciting field has been astounding, but we are at an important turning point where it will be critical to incorporate engineering solutions with quantum architectural considerations, laying the foundation towards scalable fault-tolerant quantum computers in the near future.Comment: 10 pages, 5 figure

    Procedure for systematically tuning up crosstalk in the cross resonance gate

    Full text link
    We present improvements in both theoretical understanding and experimental implementation of the cross resonance (CR) gate that have led to shorter two-qubit gate times and interleaved randomized benchmarking fidelities exceeding 99%. The CR gate is an all-microwave two-qubit gate offers that does not require tunability and is therefore well suited to quantum computing architectures based on 2D superconducting qubits. The performance of the gate has previously been hindered by long gate times and fidelities averaging 94-96%. We have developed a calibration procedure that accurately measures the full CR Hamiltonian. The resulting measurements agree with theoretical analysis of the gate and also elucidate the error terms that have previously limited the gate fidelity. The increase in fidelity that we have achieved was accomplished by introducing a second microwave drive tone on the target qubit to cancel unwanted components of the CR Hamiltonian.Comment: 6 pages, 5 figure

    Three Qubit Randomized Benchmarking

    Full text link
    As quantum circuits increase in size, it is critical to establish scalable multiqubit fidelity metrics. Here we investigate three-qubit randomized benchmarking (RB) with fixed-frequency transmon qubits coupled to a common bus with pairwise microwave-activated interactions (cross-resonance). We measure, for the first time, a three-qubit error per Clifford of 0.106 for all-to-all gate connectivity and 0.207 for linear gate connectivity. Furthermore, by introducing mixed dimensionality simultaneous RB --- simultaneous one- and two-qubit RB --- we show that the three-qubit errors can be predicted from the one- and two-qubit errors. However, by introducing certain coherent errors to the gates we can increase the three-qubit error to 0.302, an increase that is not predicted by a proportionate increase in the one- and two-qubit errors from simultaneous RB. This demonstrates three-qubit RB as a unique multiqubit metric.Comment: 6 pages, 2 figures V2: Fixed an error in Eqn. 1 of V1 and added supplementary informatio

    Experimental demonstration of fault-tolerant state preparation with superconducting qubits

    Full text link
    Robust quantum computation requires encoding delicate quantum information into degrees of freedom that are hard for the environment to change. Quantum encodings have been demonstrated in many physical systems by observing and correcting storage errors, but applications require not just storing information; we must accurately compute even with faulty operations. The theory of fault-tolerant quantum computing illuminates a way forward by providing a foundation and collection of techniques for limiting the spread of errors. Here we implement one of the smallest quantum codes in a five-qubit superconducting transmon device and demonstrate fault-tolerant state preparation. We characterize the resulting codewords through quantum process tomography and study the free evolution of the logical observables. Our results are consistent with fault-tolerant state preparation in a protected qubit subspace

    Multi-Path Interferometric Josephson Directional Amplifier for Qubit Readout

    Full text link
    We realize and characterize a quantum-limited, directional Josephson amplifier suitable for qubit readout. The device consists of two nondegenerate, three-wave-mixing amplifiers that are coupled together in an interferometric scheme, embedded in a printed circuit board. Nonreciprocity is generated by applying a phase gradient between the same-frequency pumps feeding the device, which plays the role of the magnetic field in a Faraday medium. Directional amplification and reflection-gain elimination are induced via wave interference between multiple paths in the system. We measure and discuss the main figures of merit of the device and show that the experimental results are in good agreement with theory. An improved version of this directional amplifier is expected to eliminate the need for bulky, off-chip isolation stages that generally separate quantum systems and preamplifiers in high-fidelity, quantum-nondemolition measurement setups

    Microwave-activated conditional-phase gate for superconducting qubits

    Full text link
    We introduce a new entangling gate between two fixed-frequency qubits statically coupled via a microwave resonator bus which combines the following desirable qualities: all-microwave control, appreciable qubit separation for reduction of crosstalk and leakage errors, and the ability to function as a two-qubit conditional-phase gate. A fixed, always-on interaction is explicitly designed between higher energy (non-computational) states of two transmon qubits, and then a conditional-phase gate is `activated' on the otherwise unperturbed qubit subspace via a microwave drive. We implement this microwave-activated conditional-phase gate with a fidelity from quantum process tomography of 87%.Comment: 5 figure

    Rapid Driven Reset of a Qubit Readout Resonator

    Full text link
    Using a circuit QED device, we demonstrate a simple qubit measurement pulse shape that yields fast ring-up and ring-down of the readout resonator regardless of the qubit state. The pulse differs from a square pulse only by the inclusion of additional constant-amplitude segments designed to effect a rapid transition from one steady-state population to another. Using a Ramsey experiment performed shortly after the measurement pulse to quantify the residual population, we find that compared to a square pulse followed by a delay, this pulse shape reduces the timescale for cavity ring-down by more than twice the cavity time constant. At low drive powers, this performance is achieved using pulse parameters calculated from a linear cavity model; at higher powers, empirical optimization of the pulse parameters leads to similar performance

    Reducing Spontaneous Emission in Circuit Quantum Electrodynamics by a Combined Readout/Filter Technique

    Full text link
    Physical implementations of qubits can be extremely sensitive to environmental coupling, which can result in decoherence. While efforts are made for protection, coupling to the environment is necessary to measure and manipulate the state of the qubit. As such, the goal of having long qubit energy relaxation times is in competition with that of achieving high-fidelity qubit control and measurement. Here we propose a method that integrates filtering techniques for preserving superconducting qubit lifetimes together with the dispersive coupling of the qubit to a microwave resonator for control and measurement. The result is a compact circuit that protects qubits from spontaneous loss to the environment, while also retaining the ability to perform fast, high-fidelity readout. Importantly, we show the device operates in a regime that is attainable with current experimental parameters and provide a specific example for superconducting qubits in circuit quantum electrodynamics.Comment: 9 pages, 6 figures, 1 tabl

    Characterization of hidden modes in networks of superconducting qubits

    Full text link
    We present a method for detecting electromagnetic (EM) modes that couple to a superconducting qubit in a circuit-QED architecture. Based on measurement-induced dephasing, this technique allows the measurement of modes that have a high quality factor (Q) and may be difficult to detect through standard transmission and reflection measurements at the device ports. In this scheme the qubit itself acts as a sensitive phase meter, revealing modes that couple to it through measurements of its coherence time. Such modes are indistinguishable from EM modes that do not couple to the qubit using a vector network analyzer. Moreover, this technique provides useful characterization parameters including the quality factor and the coupling strength of the unwanted resonances. We demonstrate the method for detecting both high-Q coupling resonators in planar devices as well as spurious modes produced by a 3D cavity.Comment: 4 pages, 2 figures; updated to published versio

    Hardware-efficient Variational Quantum Eigensolver for Small Molecules and Quantum Magnets

    Full text link
    Quantum computers can be used to address molecular structure, materials science and condensed matter physics problems, which currently stretch the limits of existing high-performance computing resources. Finding exact numerical solutions to these interacting fermion problems has exponential cost, while Monte Carlo methods are plagued by the fermionic sign problem. These limitations of classical computational methods have made even few-atom molecular structures problems of practical interest for medium-sized quantum computers. Yet, thus far experimental implementations have been restricted to molecules involving only Period I elements. Here, we demonstrate the experimental optimization of up to six-qubit Hamiltonian problems with over a hundred Pauli terms, determining the ground state energy for molecules of increasing size, up to BeH2. This is enabled by a hardware-efficient variational quantum eigensolver with trial states specifically tailored to the available interactions in our quantum processor, combined with a compact encoding of fermionic Hamiltonians and a robust stochastic optimization routine. We further demonstrate the flexibility of our approach by applying the technique to a problem of quantum magnetism. Across all studied problems, we find agreement between experiment and numerical simulations with a noisy model of the device. These results help elucidate the requirements for scaling the method to larger systems, and aim at bridging the gap between problems at the forefront of high-performance computing and their implementation on quantum hardware.Comment: 6 pages, 4 figures in main text. 18 pages, 9 figures in supplementary informatio
    corecore